what to control

model1 graph

model1 simulation

Model 1 Model 2
(Intercept) −0.024 −0.014
(0.012) (0.010)
x 1.491 0.983
(0.009) (0.010)
z 1.002
(0.014)
Num.Obs. 10000 10000
R2 0.744 0.829
R2 Adj. 0.744 0.829
AIC 32532.9 28504.3
BIC 32554.6 28533.2
Log.Lik. −16263.471 −14248.173
F 29089.849 24244.025
RMSE 1.23 1.01

model2 graph

model2 simulation

Model 1 Model 2
(Intercept) −0.007 −0.004
(0.013) (0.012)
x 1.318 1.001
(0.007) (0.012)
z 0.476
(0.015)
Num.Obs. 10000 10000
R2 0.757 0.779
R2 Adj. 0.757 0.779
AIC 33432.8 32487.5
BIC 33454.5 32516.4
Log.Lik. −16713.411 −16239.758
F 31070.506 17573.832
RMSE 1.29 1.23

model3 graph

model3 simulation

Model 1 Model 2
(Intercept) 0.022 0.006
(0.016) (0.010)
x 1.491 0.988
(0.011) (0.008)
z 1.016
(0.008)
Num.Obs. 10000 10000
R2 0.632 0.862
R2 Adj. 0.632 0.862
AIC 37886.5 28088.1
BIC 37908.1 28116.9
Log.Lik. −18940.256 −14040.037
F 17169.383 31192.617
RMSE 1.61 0.99

model4 graph

model4 simulation

Model 1 Model 2
(Intercept) 0.001 −0.004
(0.016) (0.014)
x 1.503 0.999
(0.011) (0.014)
z 1.004
(0.020)
Num.Obs. 10000 10000
R2 0.638 0.712
R2 Adj. 0.638 0.712
AIC 37442.2 35159.2
BIC 37463.8 35188.1
Log.Lik. −18718.085 −17575.611
F 17653.439 12374.642
RMSE 1.57 1.40

model5 graph

model5 simulation

Model 1 Model 2
(Intercept) −0.001 −0.006
(0.016) (0.016)
x 1.332 1.009
(0.009) (0.016)
z 0.484
(0.020)
Num.Obs. 10000 10000
R2 0.667 0.686
R2 Adj. 0.667 0.686
AIC 38298.3 37707.7
BIC 38320.0 37736.6
Log.Lik. −19146.172 −18849.875
F 20040.935 10936.319
RMSE 1.64 1.59

model6 graph

model6 simulation

Model 1 Model 2
(Intercept) −0.004 0.010
(0.019) (0.014)
x 1.479 0.972
(0.013) (0.012)
z 1.030
(0.012)
Num.Obs. 10000 10000
R2 0.548 0.748
R2 Adj. 0.548 0.748
AIC 41141.0 35326.4
BIC 41162.6 35355.2
Log.Lik. −20567.482 −17659.199
F 12145.668 14807.028
RMSE 1.89 1.42

model7 graph

mdoel7 simulation

Model 1 Model 2
(Intercept) −0.069 −0.032
(0.041) (0.032)
x 0.989 1.801
(0.029) (0.025)
z −1.601
(0.020)
Num.Obs. 10000 10000
R2 0.102 0.444
R2 Adj. 0.102 0.444
AIC 56684.5 51890.4
BIC 56706.1 51919.2
Log.Lik. −28339.226 −25941.183
F 1132.397 3990.857
RMSE 4.12 3.24

model8 graph

model8 simulation

unadjusted.x   adjusted.x 
   0.9998296    0.9998023 

model9 graph

model 9 simulation

unadjusted.x   adjusted.x 
    1.000257     1.000017 

model10 graph

model10 simulation

Model 1 Model 2
(Intercept) −0.005 0.001
(0.021) (0.017)
x 1.328 2.018
(0.009) (0.012)
z −2.066
(0.030)
Num.Obs. 10000 10000
R2 0.702 0.798
R2 Adj. 0.702 0.798
AIC 43309.4 39426.6
BIC 43331.0 39455.5
Log.Lik. −21651.693 −19709.323
F 23589.619 19765.335
RMSE 2.11 1.74

model11 graph

model11 simulation

Model 1 Model 2
(Intercept) −0.016 0.003
(0.014) (0.010)
x 0.992 −0.025
(0.014) (0.014)
z 1.016
(0.010)
Num.Obs. 10000 10000
R2 0.327 0.671
R2 Adj. 0.327 0.671
AIC 35509.5 28363.6
BIC 35531.1 28392.4
Log.Lik. −17751.747 −14177.786
F 4855.772 10178.769
RMSE 1.43 1.00

model12 graph

model12 simulation

Model 1 Model 2
(Intercept) −0.030 −0.024
(0.014) (0.012)
x 0.999 0.486
(0.014) (0.015)
z 0.517
(0.009)
Num.Obs. 10000 10000
R2 0.332 0.507
R2 Adj. 0.332 0.507
AIC 35481.0 32438.9
BIC 35502.6 32467.8
Log.Lik. −17737.498 −16215.455
F 4970.258 5147.640
RMSE 1.43 1.22

variation of model11

variation of model11 simulation

Model 1 Model 2
(Intercept) −0.071 −0.016
(0.025) (0.012)
x 0.971 −0.502
(0.025) (0.015)
z 1.504
(0.009)
Num.Obs. 10000 10000
R2 0.135 0.789
R2 Adj. 0.135 0.789
AIC 46359.9 32270.8
BIC 46381.5 32299.6
Log.Lik. −23176.929 −16131.390
F 1559.325 18647.167
RMSE 2.46 1.21

model13 graph

model13 simulation

unadjusted.x   adjusted.x 
   0.9997093    1.0005497 

model14 graph

model14 simulation

unadjusted.x   adjusted.x 
   0.9995661    1.0012137 

model15 graph

model15 simulation

Model 1 Model 2 Model 3
(Intercept) −0.011 −0.017 −0.005
(0.019) (0.017) (0.022)
x 1.668 1.003 1.033
(0.022) (0.025) (0.022)
w −0.655 −0.984
(0.011) (0.012)
z 0.993
(0.021)
Num.Obs. 10000 10000 10000
R2 0.389 0.498 0.175
R2 Adj. 0.389 0.498 0.175
AIC 41371.2 39414.0 44375.7
BIC 41400.0 39450.1 44397.3
Log.Lik. −20681.595 −19702.017 −22184.825
F 3187.958 3306.140 2124.734
RMSE 1.91 1.74 2.22

model16 graph

model16 simulation

Model 1 Model 2
(Intercept) 0.001 −0.015
(0.022) (0.017)
x 0.982 −0.011
(0.022) (0.021)
z 0.989
(0.012)
Num.Obs. 10000 10000
R2 0.165 0.494
R2 Adj. 0.165 0.494
AIC 44426.2 39422.9
BIC 44447.9 39451.7
Log.Lik. −22210.111 −19707.429
F 1978.339 4878.632
RMSE 2.23 1.74

model17 graph

model17 simulation

Model 1 Model 2
(Intercept) −0.008 −0.004
(0.010) (0.007)
x 1.000 −0.023
(0.010) (0.012)
z 0.506
(0.005)
Num.Obs. 10000 10000
R2 0.498 0.754
R2 Adj. 0.498 0.754
AIC 28518.5 21384.8
BIC 28540.2 21413.6
Log.Lik. −14256.267 −10688.394
F 9909.296 15317.599
RMSE 1.01 0.70

model18 graph

model18 simulation

Model 1 Model 2
(Intercept) 0.006 0.005
(0.010) (0.007)
x 1.008 0.512
(0.010) (0.009)
z 0.496
(0.005)
Num.Obs. 10000 10000
R2 0.504 0.751
R2 Adj. 0.504 0.751
AIC 28377.1 21478.5
BIC 28398.8 21507.4
Log.Lik. −14185.574 −10735.258
F 10159.905 15095.323
RMSE 1.00 0.71

This notebook contains R code with numerical simulations for all the examples discussed in:

Cinelli et al (2020). A Crash Course in Good and Bad Controls. Available at SSRN: https://ssrn.com/abstract=3689437

summary